Наноэлектронные элементы информационных систем

В транзисторах на квантовых эффектах волновая природа электронов и соответствующие явления становятся основополагающими в их работе. Это достигается в полупроводниковых структурах с размерами, уменьшенными до 10 нм и ниже. Одними из первых появились элементы на резонансном туннелировании. Явление резонансного туннелирования было впервые описано в 1958 году японским исследователем Л. Исаки и детально исследовалось им до 1974 года. Однако всестороннее теоретическое обоснование и экспериментальные транзисторы на резонансном туннелировании появились лишь в начале 90-х годов. Транзисторы на резонансном туннелировании представляют собой двухбарьерный диод на квантовых ямах, у которого потенциал ям и соответствующие резонансные условия контролируются третьим электродом. Эти транзисторы имеют частоты переключения порядка 1012 Гц, что в 100-1000 раз выше, чем у самых лучших кремниевых транзисторов из современных интегральных микросхем. Есть предложения по созданию на таких транзисторах ячеек статической памяти и других элементов для вычислительных систем. Профессиональный ремонт электрической плиты gefest.

В 1986 году советскими учеными К.К. Лихаревым и Д.В. Авериным, изучавшими одноэлектронное туннелирование, был предложен, а позже и опробован одноэлектронный транзистор на эффекте кулоновской блокады. В его конструкции, состоящей из двух последовательно включенных туннельных переходов (рис. ), туннелирование индивидуальных электронов контролируется кулоновской блокадой, управляемой потенциалом, приложенным к активной области транзистора, расположенной в его середине между двумя прослойками тонкого диэлектрика. Количество электронов в этой области прибора должно быть не более 10, а желательно и меньше. Это может быть достигнуто в квантовых структурах с размером порядка 10 нм. В цифровых интегральных схемах на одноэлектронных транзисторах один бит информации, то есть два возможных состояния 0 и 1, может быть представлен как присутствие или отсутствие индивидуального электрона. Тогда однокристальная схема памяти емкостью 1012 бит, что в 1000 раз больше, чем у современных сверхбольших интегральных схем, разместится на кристалле площадью всего 6,45 см2. Над практической реализацией этих перспектив сегодня активно работают специалисты ведущих американских, японских и европейских электронных фирм.

Квантовый интерференционный транзистор, предложенный в 1986 году Ф. Солсом и др., использует эффект фазовой интерференции электронов в вакууме. Прибор состоит из полевого эмиттера коллектора и сегментированных конденсаторов между ними. Конденсаторы контролируют траектории и фазовую интерференцию электронов в вакууме за счет электростатического потенциала на них. Рабочие частоты этого прибора оцениваются величинами 1011-1012 Гц.

В 1993 году японскими учеными (Ю. Вада и др.) было разработано новое семейство цифровых переключающих приборов на атомных и молекулярных шнурах. Базовая ячейка (рис. ) состоит из атомного шнура, переключающего атома (на рисунке он показан красным цветом) и переключающего электрода. Общий размер такой структуры составляет менее 10 нм, а рабочие частоты оцениваются величинами порядка 1012 Гц. Принцип работы атомного реле состоит в следующем. Переключающий атом смещается из атомного шнура электрическим полем, приложенным к переключающему электроду. Реле переходит в выключенное состояние.

Теоретически показано, что зазор в атомном шнуре величиной 0,4 нм является достаточным, чтобы прервать продвижение по нему электронов. На предложенной основе разработаны логические элементы НЕ-И и НЕ-ИЛИ, ячейка динамической памяти. Предполагается, что они позволят создать суперкомпьютер c оперативной памятью 109 байт на площади 200 мкм2. Для создания атомных реле требуется уникальный сканирующий туннельный микроскоп , обеспечивающий прецизионную манипуляцию атомами. Работы в этом направлении идут успешно.

Разработанные в последние годы наноэлектронные элементы по своей миниатюрности, быстродействию и потребляемой мощности составляют серьезную конкуренцию традиционным полупроводниковым транзисторам и интегральным микросхемам на их основе как главным элементам информационных систем. Уже сегодня техника вплотную приблизилась к теоретической возможности запоминать и передавать 1 бит информации (0 и 1) с помощью одного электрона, локализация которого в пространстве может быть задана одним атомом. Ожидает практического разрешения и идея аналогичных однофотонных элементов. Широкое применение одноэлектронных и однофотонных элементов для создания информационных систем пока сдерживается недостаточной их изученностью, а главное, необходимостью обладать технологией - нанотехнологией, позволяющей конструировать требуемые структуры из отдельных атомов. Такие возможности существуют только в исследовательских лабораториях. Однако современные темпы развития электроники позволяют уверенно прогнозировать промышленное освоение нанотехнологии, а вместе с ней и наноэлектроники уже в начале XXI века/19//32/.

Читайте также

Оборудование станции Круговец линейным комплектом ДЦ Неман
На современном этапе развития железнодорожного транспорта все более значимую роль занимают системы с применением микропроцессорной техники. В настоящее время разрабатываются и вводятся в ...

Проект участка сети доступа по технологии PON г. Новосибирска
Современное общество - информационное общество. Жизнь и деятельность человека неразрывно связана с информацией, ее хранением, передачей и обработкой, Объем данных передаваемых по канала ...

Основы телефонной коммутации
История освоения направления телекоммуникационного оборудования началась в далеком 1992г., когда на развалинах Советского Союза небольшая группа инженеров-энтузиастов во главе с будущим ...

Основные разделы

Все права защищены! (с)2024 - www.generallytech.ru