а) Гистограмма. Гистограмма позволяет определить равномерность распределения символов в тестируемой последовательности, а также оценить частоту появления конкретного символа. Данный тест незаменим при проверке последовательности на "случайность", а также при исследовании генераторов с произвольным законом распределения символов. Для того чтобы последовательность удовлетворяла свойствам случайности, необходимо, чтобы в ней присутствовали все символы, при этом разброс частот появления символов стремился к нулю. Рассматриваемый тест может принести пользу также в тех случаях, когда оценивается качество последовательности с законом распределения, отличным от равномерного, либо последовательности, в которой некоторые символы вообще отсутствуют, и т. д.
б) Распределение на плоскости. Тест позволяет оценивать равномерность и независимость распределения символов в исследуемой последовательности. Для построения графической зависимости на поле размером 256х256 наносятся точки с координатами
(Qi; Qi+1)
где Qi, - i-й элемент последовательности,
, т - длина последовательности. Далее анализируется полученная картина. В случае некачественной последовательности точки распределены неравномерно, либо наблюдается некий узор.
Для последовательностей большой длины (порядка 700 Кб и выше) положительным результатом считается график, представляющий собой абсолютно черный квадрат.
в) Байтовая АКФ. Тест проверяет взаимонезависимость элементов изучаемой последовательности на основе анализа всплесков корреляции. Для расчета автокорреляционной функции последовательность нормируется. Пусть [q7…q1q0] -двоичная запись элемента последовательности длиной m, qj
{0, 1},
. Тогда нормированное значение этого элемента вычисляется как
(3.1)
После этого вычисляются всплески корреляции
(3.2)
Нетрудно заметить, что при
= 0 и
= m значение К (
)= 1. Во всех остальных случаях для качественной ПСП значения К(
) должны стремиться к нулю.
г) Битовая АКФ. Тест проверяет взаимонезависимость битов последовательности. Сначала двоичное представление последовательности нормируется: 1
1, 0
-1. Затем вычисляются всплески корреляции по формуле
(3.3)
где М - размер последовательности в битах, а
- i-й бит нормированной последовательности. При
=0 и
= М значение К (
)= 1. Во всех остальных случаях для качественной ПСП значения К (
) должны стремиться к нулю.
д) Проверка на монотонность. Тест проверяет равномерность распределения символов в изучаемой последовательности на основе анализа длин участков возрастания и убывания. В качественной ПСП разброс длин этих участков должен стремиться к нулю.
Читайте также
Проектирование системы автоматического управления очистки стекла спортивного самолета
Задачи
по управлению тем или иным явлением или процессом, возникающие в повседневной
практической деятельности человека обширны и многообразны.
Управление
можно определить как совоку ...
Пример записи фильма в формате DVCAM
звуковой формат
Цель данной работы показать работу в условиях записи фильма в формате
Dvcam, записи зистового звука на HD-рекордер. Были выбраны 2 рассказа А.П.
Чехова: "Кот" и ...
Приемно-контрольная панель на базе микроконтроллера
Приемно-контрольные
приборы (ПКП) осуществляют прием информации от извещателей, ее запоминание,
обработку и передачу соответствующим службам, а также выполняют процедуры
взятия под охра ...