Драйвер MAX1480

При разработке модуля, имеющего интерфейс, применяются специализированные микросхемы. Производители микросхем гарантируют электрическое согласование линии связи промышленной сети и схемы обработки данных. Специализированные микросхемы выполняют только электрическое согласование. Они не производят обработку информации, протокол обмена данными для них не важен. Задача специализированной микросхемы интерфейса преобразовать балансный сигнал в небалансный.

Пример рассмотренный далее это преобразование балансного сигнала в небалансный сигнал, соответствующий требованиями последовательного асинхронного интерфейса USART. Для предотвращения проникновения помех, наведенных внешними источниками на линию связи в устройство, оснащенное интерфейсом RS-485, применяется электрическая изоляция лини связи от всех других цепей.

Электрические цепи, изолированные от корпуса прибора и от цепей питания, других цепей чаще называют гальванически развязанными. Основу схемы интерфейса с гальванической развязкой составляет микросхема, изображенная на рис. 4.1.1. Микросхема содержит элементы, исключающие электрический контакт между линией связи и схемой обработки информации и в тоже время позволяющие обеспечить надежный обмен данными. Для решения этой задачи применяются трансформаторы и оптроны. Микросхема, обеспечивающая гальваническую развязку, изготавливается по гибридной технологии и включает компоненты обоих типов. Одна из таких микросхем - MAX1480.

Рисунок 4.1.1 - Специализированная микросхема интерфейса RS-485

Внутри микросхема содержит две изолированные части. Одна часть подключена к линии связи. Другая к выводам микроконтроллера и питанию электронного модуля. Для питания цепей, работающих с линией связи, MAX1480 содержит импульсный преобразователь напряжения, использующий питание схемы электронного модуля. Провода линии: прямой балансный вход-выход А и инверсный балансный вход-выход В соединены с соответствующими выводами микросхемы DD1. Сигнальная земля линии связи соединена через резистор R1 с общим проводом питания цепей, работающих с линией связи. Резистор R1 необходим для защиты микросхемы DD1 от повреждения.

Рис. 3. Электрическая схема интерфейса RS-485

Гальваническую развязку передаваемого сигнала осуществляет оптрон, содержащийся в микросхеме DD1. Режим работы фотоприемника оптрона формирующего сигнал, передаваемый в линию, установлен сопротивлением резистора R4. Стабилитрон VD2 устанавливает оптимальный режим оптрона, разрешающего работу оптрона передатчика. Через резистор R5 поступает сигнал управления светодиодом оптрона цифрового входа приемника сигнала, поступающего из линии связи.

С вывода 13 микросхемы DD1 выход приемника сигнала RO (receiver output) поступает сигнал, принятый от линии связи в инвертированном виде. Выходной транзистор оптрона приемника микросхемы DD1 соединяет резистор R6 и затвор транзистора VT1 c общим проводом питания схемы

Для преобразования инвертированного сигнала в обычный вид в схему включен транзистор VT1 и резистор R7. Вход передатчика DI (driver input) микросхемы DD1 через резистор R9 соединен с выходом TXD микроконтроллера DD2. Резистор R9 устанавливает режим светодиода оптрона передатчика.

Резистор R8, соединенный с входом DE (driver enable) микросхемы DD1 устанавливает режим светодиода оптрона разрешающего работу передатчика. Во время приема необходимо отключать передатчик, а во время передачи сигнала отключать приемник.

При низком логическом уровне на входе DE происходит прием, при высоком логическом уровне микросхема DD1 переходит в режим передачи. Схема питается от преобразователя напряжения DA1, гальванически развязывающего питание 24 вольта от питания микросхемы интерфейса и микроконтроллера.

Таблица 1. Перечень элементов интерфейса RS-485

Позиционное обозначение

Наименование

Количество

Конденсаторы

С1, С2

SMD 0805 0,47 мкФ ±10% 50 В

2

С3

EМR 47 мкФ ±20% 16 B ф. HITANO

1

Резисторы SMD 1206 ±1%

R1

100 Ом ±1%

1

R2, R3, R4

1 кОм ±1%

3

R5

200 Ом ±1%

1

R6

1 кОм ±1%

1

R7

10 кОм ±1%

1

R8, R9

100 Ом ±1%

2

Полупроводниковые компоненты

VD1

Диод 1N4007

1

VD2

Стабилитрон 2C147В

1

VT1

Транзистор IRLU120N ф. IOR

1

Схемы и модули

DA1

Преобразователь напряжения REC5-2405SRW/H2/A/M ф. RECOM

1

DD1

Микросхема MAX1480AEPI ф. MAXIM

1

XP1

Вилка DIN41612-396 MRD

1

Перейти на страницу: 1 2

Читайте также

Проектирование двухвходовой КМОП-схемы дешифратора 2 в 4
КМОП (комплементарная логика на транзисторах металл-оксид-полупроводник; англ. CMOS, Complementary-symmetry/metal-oxide semiconductor) - технология построения электронных схем. В те ...

Надежность работы ВОЛП
В данной работе рассматривается проблема обеспечения надежности эксплуатируемых линейно-кабельных сооружений при воздействии внешних факторов - влияние молнии, воздействие коррозии, меха ...

Проект организации широкополосного доступа в коттеджном микрорайоне Чистопрудный г. Ижевска
Возможность в любое время в любом месте при любых условиях иметь доступ к неограниченным информационным ресурсам становится для современного человека одним из самых важных аспектов жизни ...

Основные разделы

Все права защищены! (с)2024 - www.generallytech.ru