Существуют четыре причины потерь в оптоволокне:
1. Собственные внутренние потери.
Собственное внутреннее поглощение материала является потерями, вызванными только чистым кремнием, тогда как внешние потери - это потери, вызванные наличием примесей в оптоволокне. В каждом конкретном материале, благодаря его молекулярной структуре, существует поглощение сигнала определенных длин волн. В случае двуокиси кремния (Si02) существуют электронные резонансы в ультрафиолетовой области для длин волн λ < 0,4 мкм. Существуют также колебательные резонансы в инфракрасной области, где λ > 7 мкм. Расплавленная двуокись кремния (стекло), которая является материалом оптического волновода, по своей природе аморфна. Поэтому эти резонансы существуют в форме полос поглощения, хвосты которых простираются в область видимого спектра. Во втором и третьем окнах прозрачности этот тип поглощения вносит вклад на уровне не более чем 0,03 дБ/км. Производители оптоволокна не могут влиять на эту составляющую поглощения, разве что перейти на другой материал для передачи светового сигнала.
2. Потери, вызванные примесями (иногда называемые внешними потерями).
Внешние потери поглощения привнесены примесями оптоволокна. Современные технологии производства уменьшили вклад от этих потерь до очень низкого уровня. В эту группу потерь вносят вклад следующие примеси: железо, медь, никель, магний и хром, которые создают существенные источники поглощения в интересующих нас окнах прозрачности. В современном процессе производства содержимое этих металлов было снижено до величин меньше одной миллиардной части, и, следовательно, они вносят очень малый вклад в общие внешние потери поглощения. В отличие от них, потери за счет наличия остаточных гидроксильных ионов (ОН) создают линию поглощения 2730 нм, ее гармоники и комбинационные составляющие 1390, 1240 и 950 нм, все они вносят существенный вклад в общие внешние потери поглощения. Эти потери вызваны наличием воды в волокне, оставшейся в процессе производства. Уровень ионов ОН в оптоволокне должен быть снижен до величин меньших одной стомиллионной части, для того чтобы поддерживать потери волокна на надлежащем уровне. Даже такая малая концентрация ОН, как одна миллионная, способна вызвать потери 50 дБ в районе «водяного пика» - 1390 нм.
3. Рассеяние Рэлея.
Этот тип потерь является внутренним и вызван флуктуациями мгновенной плотности и вариациями концентрации молекул за счет несовершенства внутренней структуры волокна: воздушных пузырьков, неоднородностей и трещин, или несовершенством направляющего волновода, вызванным обшей нерегулярностью системы сердцевина-оболочка. Существует точка на кривой поглощения в районе 1550 нм, где поглощение инфракрасных и ультрафиолетовых хвостов минимальны. Вокруг этой точки рэлеевское рассеяние является главной составляющей общих потерь. Рэлеевское рассеяние обратно пропорционально длине волны. С ростом длины волны рассеяние убывает. На длинах волн выше 1600 нм инфракрасное поглощение становится доминирующим.
4. Потери, вызванные несовершенством оптоволокна.
Несовершенство волокна - еще один источник потерь. Это потери включают потери от микроизгибов и макроизгибов. Геометрия волокна - еще одно важное понятие, описывающее несовершенство и требующее рассмотрения.
Геометрия стекла описывает концевые размерные характеристики оптического волокна. Геометрия (и это уже давно поняли) является главным фактором, определяющим потери в сростке и процент удачно выполненных сростков. Главная цель производителя оптоволокна получить более точную геометрию волокна. Волокно, полученное с соблюдением более жестких допусков на его геометрию, легче и быстрее срастить и при этом быть уверенным в высоком качестве сростка и предсказуемости полученных характеристик.
Три параметра (как показала практика) оказывают наибольшее влияние на характеристики сростка: концентричность сечений сердцевины и оболочки, допуск на диаметр оболочки и собственный изгиб волокна.
Концентричность сердцевины и оболочки дает понять насколько хорошо сердцевина волокна центрируется в стекле оболочки. Улучшение этой характеристики при производстве волокна уменьшает шанс неточного расположения сердцевины, что способствует получению сростков с меньшими потерями.
Внешний диаметр оболочки определяет размер волокна. Чем более жесткой является спецификация диаметра оболочки, тем меньше шансов, что партии волокна будут иметь различные диаметры. Допуск на диаметр оболочки особенно важен, когда используются калиброванные наконечники или осуществляется сочленение разъемных соединителей в полевых условиях. Все эти соединители рассчитаны по диаметру оболочки в месте выравнивания волокон для соединения.
Читайте также
Последовательность технологических операций формирования структуры с диэлектрической изоляцией
Прежде чем начать изложение основного материала моей курсовой работы,
стоит ввести определения некоторых понятий, которые в дальнейшем будут широко
использоваться в данной работе.
Инт ...
Проектирование устройств фильтрации
Неотъемлемая часть телекоммуникационных задач связана с преобразованием
сигналов. Одной из основных является фильтрация, т.е. выделение или подавление
определенных частот сигнала. Устрой ...
Проектирование устройства автоматической компенсации доплеровской частоты для СДЦ РЛС 5Н84А
Широкое
применение радиолокационной техники в военных целях (воздушная и наземная
разведки, навигация, вывод на траекторию ракет различного назначения) вызвало в
последние годы бурное р ...